Po odjęciu stronami równań (7.1) otrzymuje się

$$
\begin{equation*}
\mathbf{K}_{T}\left(\Delta \mathbf{q}_{2}-\Delta \mathbf{q}_{1}\right)=\mathbf{K}_{T} \cdot \psi=0 \tag{7.1a}
\end{equation*}
$$

Statycznym kryterium stanu krytycznego jest warunek
$\operatorname{det} \mathbf{K}_{T}=0$.
Sformułowanie zagadnienia własnego w odniesieniu do parametru obciążenia λ prowadzi do równania stateczności

$$
\begin{equation*}
\left[\mathbf{K}_{0}+\lambda \cdot\left(\mathbf{K}_{\sigma}^{*}+\mathbf{K}_{u 1}^{*}\right)+\lambda^{2} \cdot \mathbf{K}_{u 2}^{*}\right] \cdot \psi=0, \tag{7.3}
\end{equation*}
$$

gdzie $\mathbf{K}_{u 1}$ oraz $\mathbf{K}_{u 2}$ - części liniowa i kwadratowa macierzy sztywności przemieszczeniowej; gwiazdki przy macierzach oznaczaja, że ich składniki zostały obliczone dla obciążenia \mathbf{P}^{*}.

Powyższe równanie opisuje tzw. kwadratowe zagadnienie własne, które jest kłopotliwe do rozwiązania. W algorytmach programów komputerowych zostaje ono zlinearyzowane przez pominięcie członu kwadratowego. Prowadzi to do tzw. stateczności zlinearyzowanej

$$
\begin{equation*}
\left[\mathbf{K}_{0}+\lambda \cdot\left(\mathbf{K}_{\sigma}^{*}+\mathbf{K}_{u 1}^{*}\right)\right] \cdot \psi=0 \tag{7.3a}
\end{equation*}
$$

Jeżeli ponadto zostanie pominięta macierz \mathbf{K}_{u}, to otrzymuje się najczęściej formułowane w literaturze równanie stateczności początkowej (pkt 7.1.2). W przypadku wyboru opcji liniowej analizy wyboczeniowej (LBA) program zwykle rozwiązuje zagadnienie stateczności początkowej. W pracach [33] i [78] zarówno zagadnienie stateczności początkowej, jak i zlinearyzowanej w opisany wyżej sposób zaliczono do analiz liniowych. Macierze w równaniach mogą się różnić w zależności od rodzaju zastosowanego elementu skończonego. W zależności od przyjętych uproszczeń przy formułowaniu zagadnienia własnego oraz zastosowanych funkcji kształtu/macierzy elementu skończonego rezultaty MES mogą znacznie różnić się od ścisłych wyników metod analitycznych (przykł. 7.2 i 7.4).

Niektóre programy pozwalają na szacowanie wartości własnych na podstawie analizy modalnej modelu nieobciążonego siłami zewnętrznymi i wykorzystują w tym celu również zagadnienie własne. Zgodnie z instrukcjami programów, na przykład z instrukcją [M8], analiza modalna służy głównie do poszukiwania błędów w modelach niestabilnych. Kryterium wystąpienia niestateczności jest w tym przypadku dążenie do zera pierwszej częstości drgań własnych [77].

7.1.2. Liniowa analiza wyboczeniowa (LBA), mnożnik obciążenia krytycznego

W najczęściej stosowanej liniowej analizie wyboczeniowej (LBA, ang. Linear Buckling Analysis, Linear Bifurcation Analysis) układ traktuje się jako idealny, uwzględnia się tylko siły osiowe i poszukuje informacji, ile razy należy zmniejszyć lub zwiększyć zadane obciążenie, aby osiągnąć punkt bifurkacji (rozdwojenia stanu równowagi).

Równanie równowagi układu przyjmuje się w postaci [33]
$\left(\mathbf{K}_{L}+\mathbf{K}_{G}\right) \cdot \mathbf{q}=\mathbf{P}$,
gdzie:
\mathbf{K}_{L} - macierz sztywności sprężystej;
\mathbf{K}_{G} - macierz sztywności geometrycznej; w analizie LBA równa macierzy sztywności naprężeniowej \mathbf{K}_{σ}, związana z pracą sił osiowych stanu bezgiętnego na przemieszczeniach pobifurkacyjnych [79];
\mathbf{q} - wektor przemieszczeń przywęzłowych.
Jeżeli przyjąć, że $\mathbf{P}=\lambda \cdot \mathbf{P}^{*}$, gdzie \mathbf{P}^{*} jest wektorem obciążenia początkowego, to równanie (7.4) można zapisać w postaci

$$
\begin{equation*}
\left(\mathbf{K}_{L}+\lambda \cdot \mathbf{K}_{G}^{*}\right) \cdot \mathbf{q}=\lambda \cdot \mathbf{P}^{*} . \tag{7.4a}
\end{equation*}
$$

Poszukuje się parametrów λ, dla których możliwe są dwa rozwiązania układu równań, czyli w interpretacji fizycznej możliwe są dwie postacie równowagi układu idealnego (tzn. o prętach prostych, obciążonego siłami osiowymi). Rozwiązanie to jest możliwe jedynie wtedy, gdy [33], [40], [78]

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{K}_{L}+\lambda \cdot \mathbf{K}_{G}^{*}\right)=0 . \tag{7.5}
\end{equation*}
$$

Wyznacznik ten jest wielomianem o stopniu zależnym od liczby stopni swobody. Przykładowo, dla pręta ściskanego, swobodnie podpartego, bez węzłów pośrednich uzyska się w każdej płaszczyźnie głównej tylko dwie wartości własne, które są wyświetlane na ekranie komputera jako mnożniki obciążenia krytycznego albo współczynniki krytyczne. W różnych programach stosuje się różne oznaczenia, na przykład f [M8], [M9], $\alpha_{c r}$ [M5], a niekiedy nie stosuje się symbolu literowego [M4]. Najmniejsza wartość własna $\lambda=\lambda_{\min }$ jest nazywana w Eurokodzie mnożnikiem obciążenia krytycznego i oznaczana jako $\alpha_{c r}$.

Dla uzyskanych wartości własnych są obliczane odpowiadające im wektory własne (normalizowane w różny sposób), które w połączeniu z funkcjami

